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Abstract. The induced Chern-Simons term for a paired electron state is calculated in the quantum Hall
system by using a field theory on the von Neumann lattice. The coefficient of the Chern-Simons term, which
is the Hall conductance, has not only the usual term proportional to a filling factor due to P (parity) &
T (time reversal) symmetry breaking but also correction terms due to P & T & U(1) symmetry breaking.
The correction term essentially comes from the Nambu-Goldstone mode and depends on an infrared limit.
It is shown that the correction term is related to a topological number of a gap function in the momentum
space.

PACS. 73.43.-f Quantum Hall effects – 74.20.Fg BCS theory and its development – 11.15.-q Gauge field
theories

1 Introduction

The half-filled states for each Landau level (LL) show
amazing diversity. It is widely believed that the composite
fermion state [1], which has an isotropic Fermi surface, is
realized at the half-filled lowest LL. At the half-filled sec-
ond LL, an incompressible state with a small energy gap
is observed. This is a very rare case of an even denom-
inator fractional quantized Hall conductance [2]. At the
half-filled third and higher LLs, a highly anisotropic com-
pressible state, which has a highly anisotropic longitudinal
resistivity, is observed [3]. Theoretical studies suggest that
this state is a striped state [4]. In the von Neumann lattice
formalism, the striped state (striped Hall gas) is a com-
pressible state which has anisotropic Fermi surfaces [5].

In this paper, we concentrate attention on the half-
filled second LL, in which the 5/2 fractional quantized
Hall conductance is observed. Moore and Read proposed
the pfaffian state which is represented by the Laughlin
wave function with the pfaffian factor [6,7]. The pfaffian
state is considered as a spin polarized p wave supercon-
ducting state of composite fermions [8]. Experiments show
that the 5/2 quantized Hall state disappears by a tilted
magnetic field and anisotropic states are realized [9]. Mo-
tivated by these theoretical proposals and experimental
observations, we apply the BCS method to a striped state
with anisotropic Fermi surfaces. A mean field approach
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shows that a spin polarized p wave like pairing state at a
long-distance physics is more stable than a striped state
at the half-filled second LL [10]. Since a Nambu-Goldstone
(NG) mode appears in the paired electron state and the
Galilean invariance is spontaneously broken in the striped
state, the quantization of the Hall conductance must be
studied carefully.

The Hall conductance is quantized topologically as a
reflection of a fully gapped state. The integer quantized
Hall conductance is represented by a topological number
in a one-body problem in a magnetic field and a peri-
odic potential [11]. In a field theoretical formalism [12],
the Hall conductance can be represented by a topologi-
cal number of an electron Green’s function by using the
Ward-Takahashi (WT) identity. The Hall conductance is
the coefficient of the Chern-Simons term in the effective
action [13]. It is proved that the Chern-Simons term is not
renormalized perturbatively beyond the one-loop order if
the vacuum has only massive modes [14,15]. In a super-
conducting state, however, the U(1) symmetry is spon-
taneously broken and the massless NG mode appears.
Furthermore, the WT identity is anomalous due to the
off-diagonal condensation in particle-hole space. Therefore
the long wavelength limit must be treated delicately and
the quantization of the Hall conductance becomes non-
trivial in the present case. For example, in a P (parity) &
T (time reversal) violating superconductor, in which P &
T are spontaneously broken without an external magnetic
field, the Chern-Simons term is induced. The coefficient of
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this Chern-Simons term has infrared singularities due to
the NG mode of the broken U(1) symmetry and is related
with a topological number [16]. Related examples are in-
vestigated in some field theoretical models [17,18].

In this paper, we examine to calculate the effective ac-
tion for a paired electron state (not a paired composite
fermion state [7]). At the electron one-loop order, only
the Chern-Simons term is induced and the coefficient be-
comes e2

2π ν at a filling factor ν after integrating out the
NG mode. Beyond the one-loop order, not only the Chern-
Simons term but also the Meissner term are induced. In
order to include a vertex correction, the anomalous WT
identity is applied in a gauge invariant manner [19]. The
coefficient of the Chern-Simons term has corrections to
e2

2π ν. The corrections include an infrared singularity and
are related to a topological invariant of a gap function in
the momentum space, intriguingly.

The paper is organized as follows. In Section 2, we
review the BCS formalism in the von Neumann lattice
basis. In Section 3, the low-energy effective action of a
paired electron states is derived in the one-loop order. In
Section 4, we investigate the effective action beyond the
one-loop order with the help of the WT identity. Section 5
is a summary and discussion. In Appendix A, some use-
ful relations including the Pauli’s matrices are provided.
In Appendix B, the matrix elements between different LL
indices in a current vertex are given. In Appendix C, we
present an example of an infrared limit in which the cor-
rection term appears in the Hall conductance.

2 BCS formalism

In a strong perpendicular magnetic field B, an electron
guiding-center coordinate (X, Y ) of a cyclotron motion
with frequency ωc = eB/m is non-commutative as

[X, Y ] = i
a2

2π
, (2.1)

where a =
√

2π�/eB. The guiding-center coordinate is a
conserved quantity in each LL energy El = �ωc(l+ 1

2 ); thus
(X, Y ) space generates the degeneracy within one LL. The
non-commutativity introduces a cell structure of area a2.
The minimal uncertainty state in (X, Y ) space is given by
the coherent state, namely the eigenstate of X + iY . The
states become a minimal complete set when expectation
values of (X, Y ) are on sites of a lattice whose unit cell
area is a2 [20]. We call this lattice the von Neumann lattice
(vNL) [21]. A unit magnetic flux penetrates the unit cell of
the vNL. The magnetic translational invariance is replaced
by the lattice translational invariance, which provides a
two-dimensional momentum p whose fundamental region
is a magnetic Brillouin zone (MBZ), |pi| ≤ π/a. Moreover,
a local U(1) gauge symmetry in p space appears. Within a
LL, a one-electron state is labeled by p and feels the U(1)
gauge field along its path in p space. More specifically, the
electron is on the base manifold of a two torus where the
unit flux penetrates the surface of the torus. An electron

field is expanded by the direct product of the LL state |l〉
and the momentum state |βp〉 as

Φ(r, t) =
∫

MBZ

d2p

(2π)2

∞∑

l=0

bl,p;t〈r|l ⊗ βp〉. (2.2)

The electron operator bl,p obeys a twisted boundary con-
dition bl,p+2πn = bl,peiφ(p,n) with φ(p, n) = π(nx + ny) −
nypx. In the following, we take � = c = a = 1. We use the
rectangular lattice (X, Y ) = (mrs, n/rs), where m, n are
integers and rs is an asymmetry parameter of the vNL.
The notations k̂ = (rskx, ky/rs) and p̃ = (px/rs, rspy) are
used.

First of all, we review the BCS formalism in the vNL
formalism [10]. In particular, we apply the Nambu repre-
sentation of a spinless fermion, namely, a spin polarized
electron due to a strong magnetic field.

2.1 Hartree-Fock-Bogoliubov-de Gennes Hamiltonian
and current vertex

Let us consider a clean electron system in a planar space in
a strong magnetic field. The electrons interact each other
through the Coulomb interaction. The total Hamiltonian
is given by H = H0 + Hc where

H0 =
∫

d2rΦ†(r)
(p + eA)2

2m
Φ(r), (2.3)

Hc =
1
2

∫
d2rd2r′ρ(r)Vc(r − r′)ρ(r′). (2.4)

Here ρ(r) = Φ†(r)Φ(r), Vc(r) = q2/r and q2 = e2

4πε used as
the energy unit. In the BCS formalism [22], Hc is decom-
posed into a mean field Hamiltonian Hm and a residual
Coulomb interaction Hc − Hm as H = H0 + Hm + (Hc −
Hm). The Hartree-Fock-Bogoliubov-de Gennes (HFBd)
Hamiltonian HHFBd = H0 + Hm is defined by

HHFBd =
∞∑

l=0

∫

MBZ

d2p

(2π)2
Ψ †

l,pgl(p) · τΨl,p (2.5)

with a spinor [19]

Ψl,p =
1√
2

(
bl,p

b†l,−p

)
. (2.6)

Here, τi is the Pauli’s matrix, and gl(p) =
(Re∆l(p),−Im∆l(p), ξl(p)) is a mean field vector in
which ∆l(p) is a superconductivity gap and ξl(p) is an
energy spectrum of a normal state. The mean field vector
will be determined by solving simultaneous self-consistent
equations later. The energy eigenvalues of gl(p) · τ are
given by ±gl(p)(≡ ±|gl(p)|).

A Green’s function Gl(p) without a LL mixing is de-
fined in a matrix form for the particle-hole space by

− i

∫
dt1e

ip0(t1−t2)〈TΨl1,p1;t1Ψ
†
l2,p2;t2

〉 =

δl1,l2Gl(p)
∑

n

(2π)2δ2(p1 − p2 − 2πn)eiτ3φ(p,n) (2.7)
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with

Gl(p) =
p0τ0 + gl(p) · τ
p2
0 − gl(p)2 + iδ

eiτ3p0δ. (2.8)

Here, τ0 is a unit matrix and δ is a positive infinitesimal.
The boundary conditions for components of gl(p) are non-
trivial as

ξl(p + 2πn) = ξl(p), (2.9)

∆l(p + 2πn) = e2iφ(p,n)∆l(p), (2.10)

according to the twisted periodicity of bl,p. This indicates
that the gap function is a complex number.

Next, a current operator is introduced in the matrix
form for the particle-hole space. The Fourier transformed
current operator jµ(q) = e

∫
d2re−iq·rjµ(r) is represented

by

jµ(q) =
∫

MBZ

d2p

(2π)2
∑

l1,l2

Ψ †
l1,pΥµ

(0)l1,l2
(p,p− q̂)Ψl2,p−q̂,

(2.11)
with the current vertex in the matrix form

Υµ
(0)l1,l2

(p,p − q̂) =
(

fµ
l1,l2

(q) 0
0 −{fµ

l1,l2
(−q)}∗

)

× e−iτ3
∫ p

p−q̂
α(k)·dk (2.12)

where the matrix element is given by

fµ
l1,l2

(q) =
〈

l1

∣
∣
∣
∣
1
2
{vµ, eiq·χ}

∣
∣
∣
∣ l2

〉
. (2.13)

Here, vµ = (1,−ωcη, ωcξ) is an electron velocity and
χ = (ξ, η) is a relative coordinate operator. Clearly,
{fµ

l1,l2
(−q)}∗ = fµ

l2,l1
(q) follows from the definition of

fµ
l1,l2

(q) (see Appendix B).
The current vertex is entirely different from the one

in an electron system without a magnetic field. The spa-
tial components of the current vertex are not represented
by a momentum derivative of a free kinetic energy. Fur-
thermore, the current operator has the non trivial phase
factor e−i

∫
p
p−q̂

α(k)·dk caused by the U(1) gauge field in
p space. The phase factor is given in the Landau gauge
α(k) = (ky/2π, 0) as

i

∫ q

p

α(k) · dk = − i

4π
(p − q)x(p + q)y. (2.14)

The field strength B = ∇k × α(k) = −1/2π is equivalent
to the unit flux in the MBZ.

2.2 Gap equation

In the HFBd Hamiltonian, gl(p) is determined by solving
simultaneous self-consistent equations of the electron self-

energy part:

ξl(p) = El +
∫

MBZ

d2q

(2π)2
g(q) − ξl(q)

2g(q)
V HF

l (q − p) − µ,

(2.15)

∆l(p) =
∫ ∞

−∞

d2q

(2π)2
∆l(−q)
2g(q)

Vl(q̃ − p̃)ei
∫ q
p

2α(k)·dk,

(2.16)

where V HF
l (q)=

∑
n

{
Ṽl

(
q̃y

2π +ñy,
q̃x

2π +ñx

)
−Vl(q̃ − 2πñ)

}
,

Ṽl(q) ≡
∫

d2q
(2π)2 Vl(p)eip·q, V (q) =

∫
d2reiq·rVc(r) and

Vl(p) = {f0
l,l(p)}2V (p). Note that the gap equation (2.16)

has the gauge field α(k) twice as large as the one of
the current vertex matrix equation (2.12). By using equa-
tion (A.4), the gap equation is rewritten in a non-local
form with p space covariant derivative D = −i∇p +A(p)
as

∆l(p) = −
∫ ∞

−∞

d2q

(2π)2
Vl(q)eiq̂·D ∆l(p)

2g(p)
, (2.17)

where A(p) = 2α(p). This is because the gap function
∆(p) is a condensation of the electron pair feeling the
gauge field 2α(p). Thus, a LL state expansion associated
with the gauge field A(p) is useful to solve equation (2.17).
The p space LL state ϕn is defined by

D2ϕn(p) = enϕn(p) (2.18)

with an eigenvalue en = 2
π (n+ 1

2 ). The eigenfunctions with
the same boundary condition as ∆l(p) are given by

ϕ(2)
n (p) =

1√
n!

(π

2

)n
2

(Dx − iDy)n

×
√

2e−
p2

y
2π ϑ2

(
px + ipy

π

∣
∣
∣
∣ 2i

)
, (2.19)

ϕ(3)
n (p) =

1√
n!

(π

2

)n
2

(Dx − iDy)n

×
√

2e−
p2

y
2π ϑ3

(
px + ipy

π

∣
∣
∣
∣ 2i

)
. (2.20)

These eigenfunctions have the following properties
ϕ

(2,3)
n (−p) = (−1)nϕ

(2,3)
n (p), ϕ

(2)
n (px + π, py) =

−ϕ
(2)
n (px, py), ϕ

(3)
n (px +π, py) = ϕ

(3)
n (px, py), ϕ

(2)
n (px, py +

π) = e−ipxϕ
(3)
n (px, py), and ϕ

(3)
n (px, py + π) =

e−ipxϕ
(2)
n (px, py). Since the gap has the odd parity,

∆(−p) = −∆(p), we expand ∆l(p) and ∆(p)/2g(p) as

∆l(p) =
∑

n≥1,i=2,3

c(i)
n ϕ

(i)
2n−1(p), (2.21)

∆l(p)
2g(p)

=
∑

n≥1,i=2,3

d(i)
n ϕ

(i)
2n−1(p). (2.22)

The coefficients c
(i)
n and d

(j)
n are determined self-

consistently. Furthermore, the chemical potential µ is
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determined by a filling factor ν as

ν =
∫ ∞

−∞

dp0

2πi

∫

MBZ

d2p

(2π)2
1
2
Tr {τ3Gl0(p)} (2.23)

= l0 +
1
2
−

∫

MBZ

d2p

(2π)2
ξl0(p)
2g(p)

,

with the assumption that the condensation happens at
the l0 th LL. The trace is taken for both the LL and the
particle-hole space.

We suppose that a normal state is a striped Hall gas
with anisotropic Fermi surfaces in the Hartree-Fock ap-
proximation. Since the kinetic energy in a strong mag-
netic field is quenched into the LL energy, the electron
states are infinitely degenerate and a Fermi surface does
not exist in the absence of the interaction. In the striped
Hall gas, the momentum dependent kinetic energy is spon-
taneously generated by the Coulomb interaction in the
Hartree-Fock approximation. Then the degeneracy is lifted
and anisotropic Fermi surfaces are formed in the MBZ. In
an electron system without a magnetic field, on the other
hand, a momentum dependent free kinetic term exists and
a Fermi surface is formed according to the Pauli’s exclu-
sion principle. In such a well-known system, the Cooper’s
instability is triggered by a certain attractive interaction,
and then a gap function is determined by a gap equa-
tion. In the present case, however, the kinetic energy and
the pairing condensation are generated at the same time
by the Coulomb interaction, as seen in equations (2.15)
and (2.16).

In the reference [10], a self-consistent calculation was
done by using an effective Hamiltonian and a solution at
the half-filled l = 1 LL was numerically obtained as

ξ1(py) = −teff cos py − t(0,3) cos 3py − µ′, (2.24)

∆(p) = c
(3)
1 ϕ

(3)
1 (p) + c

(3)
3 ϕ

(3)
3 (p), (2.25)

where teff = 0.03, t(0,3) = −0.0003, c
(3)
1 = 0.0104,

c
(3)
3 = −0.0018, and µ′ = −0.0006. The gap function be-

haves like p-wave at the long wavelength limit. In the fol-
lowing, calculations of the Hall conductance are carried
out for a general mean field solution. Therefore, any so-
lutions satisfying the self-consistent equations can be ap-
plied to following calculations.

We assume that the magnetic field is strong enough
to neglect the LL mixing in the Green’s function, and the
normal state is the striped Hall gas at the l0 th LL. Then
the mean field vector is written as

gl(p) =
{

(Re∆(p),−Im∆(p), ξl0(p)) l = l0,
(0, 0, El − µ) l �= l0,

(2.26)

where the Fermi energy lies at the l0 th LL.

3 Effective action in one-loop order

We study a long-distance behavior of the spontaneous
U(1) symmetry breaking state by calculating the current

correlation function

πµν(q) = −i(T S)−1

∫ ∞

−∞
dt1dt2e

−iq0(t1−t2)

× 〈T jµ(q; t1)jν(−q; t2)〉 (3.1)

in the electron one-loop order, where T S is a product
of total time and total area. Under a static homoge-
neous electric field Ey, the current density in x direc-
tion is calculated by using the gauge field aext

0 = yEy as
〈Jx(x)〉 = i

∫
dx′πxν(x− x′)aext

ν (x′) = −i∂yπ
x0(q)|q=0Ey ,

where ∂y = ∂
∂qy

. Thus, the physical observable σxy reflects
the low-energy behavior of the slope of πµν(q) at the ori-
gin, which should be gauge invariant.

We consider an effective action of a fluctuating gauge
field aµ around an external gauge field Aµ. The action of
our system is microscopically written as

S[Φ, a] =
∫

d3xΦ†(x) {i∂0 − ea0 + µ

−H0(p + eA + ea) − Hc}Φ(x). (3.2)

This action is manifestly invariant under the U(1) gauge
transformation Φ(x) → eieθ(x)Φ(x) and aµ(x) → aµ(x) +
∂µθ(x). The mean field action in the HFBd approximation,
which describes the spontaneous U(1) symmetry breaking,
is given by

SHFBd[Ψ, a] = S(0)[Ψ ] + Sint[Ψ, a], (3.3)

S(0)[Ψ ] =
∮

d3pΨ †(−p)G−1(p)Ψ(p), (3.4)

Sint[Ψ, a] = −
∫

d3x{ejµ(x)aµ(x)

+
eωc

2
j0(x)a(x) · a(x)}. (3.5)

We use a short notation for the integral as
∮

d3p ≡
∫

R1 dp0

∫
T 2 d2p =

∫ ∞
−∞

dp0
(2π)

∫
MBZ

d2p
(2π)2 and the contraction

of sub-scripts and super-scripts for the space-time index is
taken. Here, the electron field is a two-component spinor
for the particle-hole space, and G−1 and jµ are the inverse
Green’s function in equation (2.8) and the current in equa-
tion (2.11), respectively. The second term in equation (3.5)
is a diamagnetic term. The action SHFBd[Ψ, a] does not
hold the U(1) gauge symmetry, because the pairing con-
densation breaks it. In order to recover the symmetry in
the action [23], a NG mode θ is introduced by

Ψ(x) → eieτ3θ(x)Ψ(x). (3.6)

Accordingly, the NG mode always couples with others by
replacing aµ with aµ+∂µθ in SHFBd[Ψ, a]. After integrating
the electron field, the low-energy effective action takes the
form as

Seff [a, θ] =
∫

d3q

(2π)3

{
e2

2
(aµ,−q − iqµθ−q)πµν(q)

×(aν,q + iqνθq) −
eωcν

4π
(a−q − iqθ−q) · (aq + iqθq)

}
,

(3.7)
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Fig. 1. Feynman diagram for the current correlation function
in one-loop order. The solid line stands for the Green function
G. The wavy line attached to solid line stands for the bare
vertex.

where the second term comes from the diamagnetic cur-
rent part. The long-distance behavior is obtained by the
Taylor expansion πµν(q) = πµν(0) + qρ∂

ρπµν(q)|q=0 +
O(q2) in the effective action. The one-loop current cor-
relation function πµν

(0)(q) is given by

πµν
(0)(q) = ie2

∮
d3p

1
2
Tr[Υµ

(0)(p, p − q̂)

× G(p − q̂)Υ ν
(0)(p − q̂, p)G(p)]. (3.8)

The corresponding Feynman diagram is shown in Figure 1.
The overall plus sign is due to the fermion one-loop.

First, let us calculate πµν
(0)(0). The off-diagonal

terms vanish immediately because π0i
(0)(0) contains

TrL[Υ 0
(0)(p, p)Υ i

(0)(p, p)] = 0 and πij
(0)(0) contains

∫
dq(gl+1 ×gl)z = 0 due to equation (2.26). The diagonal

terms create the gauge fields mass term and the kinetic
term of the NG mode. The direct calculation shows

π00
(0)(0) =

e2

2

∫

T 2
d2p

|∆(p)|2
g3

l0

≡ v2
n, (3.9)

πii
(0)(0) = ωc

{
e2

2π

(
l0 +

1
2

)
− e2

2π

∫

T 2
d2p

ξl0(p)
2gl0(p)

}

+ O
(
|∆|2
ωc

)

=
e2ωc

2π
ν + O

(
|∆|2
ωc

)
, (3.10)

where we use equation (2.26).

Second, we calculate the q linear terms ∂ρπµν
(0)(q)|q=0.

It is easy to show that ∂iπ0j
(0)(q)|q=0 = −∂iπj0

(0)(q)|q=0,
and ∂0πxy

(0)(q)|q=0 = −∂0πyx
(0)(q)|q=0 by ∂ρΥµ

(0)(p, p −
q̂)|q=0 = −∂ρΥµ

(0)(p−q̂, p)|q=0 and Tr{τ3G2
l+1(p)τ0Gl(p)} =

Tr{τ0G2
l+1(p)τ3Gl(p)}. The calculation is straightforward

and we obtain

∂iπ0j
(0)(q)|q=0 =

ie2

2π
εij

{
l0 +

1
2
−

∫

T 2
d2p

ξl0(p)
2gl0(p)

−
∫

T 2
d2p

El0 |∆(p)|2
2g3

l0
(p)

}

+ O
(

|∆|2
ωcgl0

)

= i

(
e2

2π
ν − Cl0

)
εij + O

(
|∆|2
ωcgl0

)
, (3.11)

∂0πij
(0)(q)|q=0 = − ie2

2π
εij

{
l0 +

1
2
−

∫

T 2
d2p

ξl0(p)
2gl0(p)

}

+ O
(

|∆|2
ωcgl0

)

= − i
e2

2π
νεij + O

(
|∆|2
ωcgl0

)
, (3.12)

where Cl0 = e2

2π

∫
T 2 d2p

El0 |∆(p)|2
2g3

l0
(p)

. Apparently,

∂0πij
(0)(q)|q=0 is different from ∂iπ0j

(0)(q)|q=0. The other
terms, ∂µπνν

(0)(q)|q=0, disappear in the effective action,
since these terms are coefficients of parity odd terms
aν(−q)qµaν(q). Next, we study whether the correction
term Cl0 survives or not after the NG field is integrated
out.

By substituting πµν
(0)(0) and ∂ρπµν

(0)(q)|q=0 into equa-
tion (3.7), the effective action reads

Seff [a, θ] =
∫

d3q

(2π)3

{
v2

n

2
a0,−qa0,q

+
ie2ν

4π
εµνρaµ,−qqνaρ,q − i

Cl0

2
ε0ija0,−qqiaj,q

+
v2

n

2
q2
0θ−qθq + i

(
v2

nq0a0,−q

+iCl0q0ε
0ijqiaj,−q

)
θq

}
. (3.13)

Here, we see that the πii(0) cancels the diamagnetic cur-
rent term. After integrating out the NG field, we obtain
the gauge invariant effective action

Seff [a] = −i

∫
d3q

(2π)3
νe2

4π
εµνρaµ,qqνaρ,−q

= ν
e2

2π

∫
d3x

1
2
εµνρaµ(x)∂νaρ(x). (3.14)

As a result, at the fermion one-loop level, the induced low-
energy effective action has merely the Chern-Simons term.
Therefore, the Hall conductance in the one-loop order is
given by

σone−loop
xy =

e2

2π
ν. (3.15)

In a usual superconductivity, a gauge invariant mass term
of gauge fields is induced. In the present case, however, it
is not induced in the one-loop level. In the next section,
higher order corrections to the current vertex part are
investigated by using the WT identity.
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4 Beyond one-loop calculation

In order to calculate the current correlation function be-
yond the one-loop order, we apply the WT identity to
the current vertex part. To obtain the WT identity, it is
quite useful to take the current basis in the vNL formal-
ism following the reference [21]. In this basis, the electron
annihilation operator is transformed by a unitary matrix
as

b̃l(p) =
∑

l1

Ull1(p)bl1(p). (4.1)

The unitary matrix Ul1l2(p) is defined by

Ul1l2(p) = 〈l1|e−ip̃xξe−ip̃yη|l2〉. (4.2)

The operator U(p) is a translational operator for the elec-
tron relative coordinate as U(p)f(ξ, η)U †(p) = f(ξ +
p̃y/2π, η − p̃x/2π). The phase factor with the U(1) gauge
field α(p) in the density operator is eliminated by this
transformation. The density operator is transformed into
the form of one in the absence of the magnetic field, while
the velocity is shifted in the current operator. In the cur-
rent basis, the electron does not feel the U(1) gauge field
α(p) but their cyclotron radii are changed. Actually, us-
ing the Hausdorff formula, the density and the current
operators are rewritten as

j0(q) =
∫

T 2
d2p

∑

l1,l2

b†l1,p{U †(p)U(p − q̂)}l1,l2bl2,p−q̂

=
∫

T 2
d2p

∑

l

b̃†l,pb̃l,p−q̂, (4.3)

ji(q) =
∫

T 2
d2p

∑

l1,l2

b†l1,p

1
2
{vi, U †(p)U(p − q̂)}l1,l2bl2,p−q̂

=
∫

T 2
d2p

∑

l1,l2

b̃†l1,p〈l1|vi+
ωc

2π
(p̃− q

2
)i|l2〉b̃l2,p−q̂.

(4.4)

In contrast to equations (2.11) and (2.12), the phase fac-
tor with the U(1) gauge field α(p) is absent and velocity
operators are translated.

In the Nambu representation, the electron field is
transformed as

Ψ̃l(p) =
∑

l1

Ull1(p)Ψl1(p), (4.5)

with the unitary matrix

U(p) =
(

U(p) 0
0 tU∗(−p)

)
. (4.6)

Fig. 2. Feynman diagram for the current correlation function
of equation (4.11). The wavy line attached to dark circle stands
for the full vertex.

Then the density and current operator are written as

j0(q) =
∫

T 2
d2p

∑

l1,l2

Ψ †
l1

(p)
{
U†(p)U(p − q̂)

}
l1,l2

× τ3Ψl2(p− q̂)

=
∫

T 2
d2p

∑

l

Ψ̃ †
l (p)τ3Ψ̃l(p− q̂), (4.7)

ji(q) =
∫

T 2
d2p

∑

l1,l2

Ψ †
l1

(p)
1
2
{
Υ i

(0),U†(p)U(p − q̂)
}
l1,l2

τ3Ψl2(p − q̂)

=
∫

T 2
d2p

∑

l

Ψ̃ †
l (p)〈l1|Υ i

(0)τ3

+
ωc

2π

(
p − q

2

)i

τ0|l2〉Ψ̃l(p − q̂), (4.8)

where Υ i
(0) = Υ i

(0)(p, p) is given by

Υ i
(0)(p, p) =

(
vi 0
0 tvi

)
. (4.9)

The bare vertex function in this current basis is translated
as

Υ̃µ
(0)(p, p − q) = τ3δ

µ0 +
{
Υ i

(0)τ3 +
ωc

2π
(p − q

2
)iτ0

}
δµi.

(4.10)
In this way, the density vertex is diagonalized, hence, it is
easy to obtain the WT identity.

4.1 Current correlation function in the current basis

Before going to obtain and apply the WT identity, let us
obtain a general formula of current correlation functions
in the HFBd approximation. The current correlation func-
tions are generally calculated as

πµν(q) = ie2

∮
d3p

1
2
Tr{Υ̃µ

(0)(p, p − q̂)

× G̃(p − q̂)Υ̃ ν(p − q̂, p)G̃(p)}. (4.11)

where G̃(p) = U(p)G(p)U†(p), and Υ̃ ν is a full current
vertex. The corresponding Feynman diagram is shown in
Figure 2. To avoid the double counting of diagrams, only
one of two vertex parts is dressed.
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Fig. 3. Feynman diagram of equation (4.13). The wavy line
attached to oblique circle stands for ∂µG−1.

Next we represent ∂ρπµν(q)|q=0 in a simple form. Dif-
ferentiating equation (4.11), we obtain

∂ρπµν(q)|q=0 = ie2

∮
d3p

1
2
Tr{∂ρΥ̃µ

(0)(p, p − q̂)|q=0

× G̃(p)Υ̃ ν(p, p)G̃(p)

+ Υ̃µ
(0)(p, p)∂ρG̃(p − q̂)|q=0Υ̃

ν(p, p)G̃(p)

+ Υ̃µ
(0)(p, p)G̃(p)∂ρΥ̃ ν(p − q̂, p)|q=0G̃(p)}.

(4.12)

The first term vanishes because it contains only double
pole of p0 owing to ∂ρΥ̃µ

(0)(p, p − q̂)|q=0 = (1 − δµ
0 )ωc

4π τ0.
The second term becomes

ie2

∮
d3p

1
2
Tr{Υ̃µ

(0)(p, p)G̃(p)∂ρG̃−1(p)G̃(p)Υ̃ ν(p, p)G̃(p)}
(4.13)

by using the relation −∂ρG̃ = G̃∂ρG̃−1G̃. This term is
represented by the Feynman diagram in Figure 3. The
third term in equation (4.12) contains the derivative of
the vertex part. In the HFBd approximation, we use the
HFBd Green’s function in equation (2.8) in place of the
full Green’s function. Moreover, we use a dressed vertex
defined by

Υ̃µ(p − q̂, p) = Υ̃µ
(0)(p − q̂, p)

+
∫

d3q′

(2π)3
V (q′)τ3G̃(p − q̂ − q̂′)

× Υ̃µ(p − q̂ − q̂′, p − q̂′)G̃(p − q̂′)τ3,
(4.14)

in place of the full current vertex. Then the derivative of
the vertex part is given by

∂ρΥ̃µ(p − q̂, p)|q=0 = ∂ρΥ̃µ
(0)(p − q̂, p)|q=0

+
∫

d3q′

(2π)3
{V (q′)τ3∂

ρG̃(p−q̂ −q̂′)|q=0

× Υ̃µ(p − q̂′, p − q̂′)G̃(p − q̂′)τ3

+ V (q′)τ3G̃(p − q̂′)∂ρΥ̃µ(p − q̂

− q̂′, p − q̂′)|q=0G̃(p − q̂′)τ3}. (4.15)

By substituting equation (4.15) into the third term of
equation (4.12), the first term of them vanishes because
of the same reason of the disappearance of the first term
in equation (4.12). We again substitute equation (4.15)
into the remaining terms, and repeat the same procedure.

+ + ...

Fig. 4. Feynman diagram for the third term in equation (4.12).
Inner wavy line stands for the interaction potential V (k).

Fig. 5. Feynman diagram for ∂µπνρ.

As a result, we obtain the infinite series of Feynman di-
agrams as shown in Figure 4. In this way, combining the
infinite series with equation (4.15), the bare vertex part is
renormalized to the dressed vertex part of equation (4.14).

Consequently, we obtain the following useful formula

∂µπνρ(q)|q=0 = ie2

∮
d3p

1
2
Tr{∂µG̃−1(p)G̃(p)

× Υ̃ ν(p, p)G̃(p)Υ̃ ρ(p, p)G̃(p)}, (4.16)

whose Feynman diagram is shown in Figure 5. Compared
with equation (4.13), the bare vertex is replaced by the
dressed vertex part. In the following subsection we calcu-
late this term by using the WT identity.

4.2 Ward-Takahashi identity

In the current basis, the equal-time commutation relation
of the density operator and the electron operator becomes
a simple form

[j0(q), b̃l(p)] = −b̃l(p − q̂), (4.17)

as an ordinary electron case. Using this relation and the
current conserving law qµjµ(q) = 0, we obtain the WT
identity in the current basis as

qµΥ̃µ(p, p − q̂) = G̃−1(p)τ3 − τ3G̃−1(p − q̂). (4.18)

In a zero momentum limit, the off-diagonal part of G̃−1

gives infrared singularities to the vertex function as seen
in qµΥ̃µ(p, p − q̂) = {G̃−1(p) − G̃−1(p − q̂)}τ3 + G̃−1(p −
q̂)τ3−τ3G̃−1(p− q̂). As a prescription to use the derivative
form of the WT identity, we separate the regular part and
the singular part in Υ̃µ as

Υ̃µ = Υ̃µ
regular + Υ̃µ

singular , (4.19)

in which the regular part satisfies

Υ̃µ
regular(p, p) = ∂µG̃−1

reg(p)τ3. (4.20)
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Here G̃reg(p) is a diagonal part of the Green’s function in
the particle-hole space. The singular part originates from
the NG mode propagation in an internal line for the cur-
rent vertex correction. This contribution is recovered by
coupling of the NG mode with the gauge field. Hence, we
use equation (4.20) in place of the full vertex part in the
current correlation function.

4.3 πµν(0) and ∂µπνρ(q)|q=0

First, let us calculate πµν(0). With the help of the WT
identity equation (4.20), the current correlation function
at q = 0 is given by

πµν(0) = ie2

∮
d3p

1
2
Tr{Υ̃µ

(0)(p, p)

× G̃(p)∂ν G̃−1
reg(p)τ3G̃(p)}. (4.21)

By using the relation in Appendix A, we can show that
πµν(0) = 0 for µ �= ν and

π00(0) = e2

∫

T 2
d2p

|∆(p)|2
2{g(p)}3

≡ v2
n. (4.22)

In this section we omit the LL index l0 in gl0 for simplicity.
πii(0) is given by

πii(0) = ωc
e2

2π
ν − e2

2π

∫

T 2
d2p

(2l0 + 1)|∆(p)|2
2g(p)

(4.23)

up to O(|∆|2/ωc). The first term of πii(0) is canceled with
the diamagnetic term and the second term gives the mass
term of gauge fields.

Next, we calculate ∂µπνρ(q)|q=0. Using equation (4.16)
and the WT identity, one finds

∂µπνρ(q)|q=0 = ie2

∮
d3p

1
2
Tr{∂µG̃−1(p)G̃(p)

∂ν G̃−1
reg(p)τ3G̃(p)∂ρG̃−1

reg(p)τ3G̃(p)}. (4.24)

This is similar to the topological invariant obtained for the
integer quantum Hall state [12,21]. In the integer quantum
Hall state, the Hall conductance is topologically quantized
and not renormalized beyond the electron one-loop order
perturbatively. In the present case, on the other hand, the
above term is not topological invariant due to the broken
U(1) symmetry. In Section 4.4, we will extract the topo-
logical invariant from this term in the limit |∆(p)| → 0.

By tedious calculations with the help of the relation in
Appendices A and B, we can show that ∂iπij = 0, and

∂0πij = ie2εij

∮
d3p

1
2
Tr

{
i

2π
τ3G(p)

+ ∂xG−1
regτ3G∂yG−1

regτ3G2

}
, (4.25)

up to O(|∆|2/ωcg). The first term is proportional to a
filling factor and the second term vanishes. We also obtain

∂iπj0 = ie2

∮
d3p

1
2
Tr

{
i

2π
εijτ3G(p)

1
2
Tr + (∂iG−1

+ Ai(p)∆̃)G∂jG−1
regτ3Gτ3G

}

− iεij
e2

2π

∫

T 2
d2p

El0 |∆|2
2{g(p)}3

(4.26)

up to O(|∆|2/ωcg), where ∆̃ = gxτ2−gyτ1. The first term
is proportional to a filling factor. The second term is ex-
pressed by

ie2

∫

T 2
d2p

× {gx(p)∂igy(p) − gy(p)∂igx(p) −Ai(p)|∆|2}∂jgz(p)
4{g(p)}3

≡

− iαij (4.27)

which is related to a topological number in the momen-
tum space. The term proportional to Ai(p) in the numer-
ator guarantees the periodicity of the integrand. The third
term in equation (4.26) is proportional to ωc.

4.4 Effective action beyond one-loop

Following Section 3, the effective action of gauge fields aµ

and the NG mode θ is given in a gauge invariant form as

Seff [a, θ] =
∫

d3x

{
ν

e2

2π

1
2
εµνρaµ∂νaρ

+(−αji + Cl0ε
ij)(ai + ∂iθ)∂j(a0 + ∂0θ)

+
v2

n

2
(a0 + ∂0θ)2 −

(csvn)2

2
(ai + ∂iθ)2

}
.

(4.28)

Here,

(csvn)2 =
e2

2π

∫

T 2
d2p

(2l0 + 1)|∆|2
2g

. (4.29)

After integrating the NG mode, we obtain the gauge in-
variant effective action as

Seff [a] =
∫

d3x

{(
ν

e2

2π

−c2
s(−εijαki∂k∂j + Cl0∂

2
i )

∂2
0 − c2

s∂
2
i

)
1
2
εµνρaµ∂νaρ

(4.30)

+
v2

n

2

(
(a0)2 − c2

s(ai)2 +
(∂0a0 − c2

s∂iai)2

∂2
0 − c2

s∂
2
i

)}
.

The first term is the induced Chern-Simons term which
is gauge invariant. The second term can be written by a
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quadratic term of transverse components of gauge fields
aT
0 ≡ a0 − ∂0(∂0a0 − c2

s∂iai)/(∂2
0 − c2

s∂
2
i ) and aT

i ≡
ai−∂i(∂0a0−c2

s∂jaj)/(∂2
0 −c2

s∂
2
i ) as v2

n

2 {(aT
0 )2−c2

s(aT
i )2}.

Since the transverse gauge field is invariant under the U(1)
gauge transformation, the obtained action has the mani-
fest U(1) gauge symmetry. The infrared singularity in the
induced Chern-Simons term corresponds to the contribu-
tion of the NG mode which is involved in Υ̃µ

singular .
To obtain the low-energy physics, we must take ∂µ → 0

limit in the coefficient of the induced Chern-Simons term.
The order of zero momentum limit is delicate, because
lim∂0→0 and lim∂i→0 do not commute. In the limit ∂i → 0
before taking ∂0 → 0, the effective action becomes

lim
∂0→0

lim
∂i→0

Seff [a] =
∫

d3x

[
ν

e2

2π

1
2
εµνρaµ∂νaρ

+
v2

n

2
{(aT

0 )2 − c2
s(a

T
i )2}

]
. (4.31)

Thus the Hall conductivity is not renormalized in this
limit. In contrast to the one-loop order, the Meissner term
appears. This infrared limit corresponds to the experimen-
tal situation of the quantum Hall effect, because a spatial
homogeneous external electric field is added to the system
adiabatically. On the other hand, for the inverse order, the
correction Cl0 and αij appear in the Hall conductance as

lim
∂x→0

lim
∂y→0

lim
∂0→0

Seff [a] =
∫

d3x

[(
ν

e2

2π
+ αxy

+Cl0)
1
2
εµνρaµ∂νaρ

+
v2

n

2
{(aT

0 )2 − c2
s(a

T
i )2}

]
.

(4.32)

This limit is applicable to a physical situation when the
gauge field is spatially inhomogeneous or dynamical. The
corresponding infrared limit is given in Appendix C.

4.5 Topological consideration

Finally, we study the topological nature of the correction
term which depends on a global structure of a mean field
solution. To see a topological property of the correction
αij to the Chern-Simons coupling, let us consider the limit
|∆(p)| → 0. In this limit, the quantity of the integral
equation (4.27) comes from only the Fermi energy regime.
Actually, we can show that

lim
|∆(p)|→0

∫

T 2
d2p

|∆(p)|2
2{g(p)}3

f(p) =
∫

FS

dl

(2π)2
f(p(l))
|∂⊥gz|

,

(4.33)
where f(p) is an arbitrary function on the MBZ, the in-
tegral

∫
FS

dl is defined on the Fermi surface (line) p(l),
and ∂⊥g3 is a Fermi velocity vF . By substituting ∆(p) =

Py

Px

Py

Px

Fig. 6. Vortices of gap functions in the Fermi sea. The left
figure is for ϕ(3) and the right one is for ϕ(2). The shaded
portion is the Fermi sea of the striped Hall gas. At the center
of vortices, ∆(p) becomes zero.

|∆(p)|eiΘ(p) into αij and using equation (4.33), we obtain

εijα
ij =

e2

8π2

∫

FS

(∇Θ(p) + A(p)) · dp

=
e2

2π

(
Nv

2
+ ν∗

)
. (4.34)

Here the integer Nv is a vortex number of ∆(p) and ν∗
is a filling factor in the l0th Landau level. In other words,
the correction term εijα

ij is composed of the topological
number Nv, and geometrical number ν∗. If we use equa-
tions (2.24) and (2.25) where the Fermi surfaces are at
py = ±π/2, then one finds Nv = 0, ν∗ = 1/2. Thus we
obtain αxy = e2/4π and αyx = 0. If we use the ϕ(2)

in place of ϕ(3) naively, then Nv = −2 and we obtain
αxy = −e2/4π and αyx = 0. The schematic figure of the
vortex structures of ∆(p) is shown in Figure 6.

In addition, in the limit |∆(p)| → 0, it is shown that

(csvn)2 = 0, (4.35)
v2

n = O(1/vF ), (4.36)
Cl0 = O(ωc/vF ). (4.37)

In the striped Hall gas, the Fermi velocity logarithmi-
cally diverges due to the singularity of the Coulomb po-
tential [24]. The non-universal quantities v2

n and Cl0 are
negligibly small in the limit. Therefore the correction term
to the Chern-Simons coefficient in the limit |∆(p)| → 0 is
given by the universal quantity in equation (4.34).

5 Summary and Discussion

We have derived the low-energy effective action of a paired
electron state in the quantum Hall system by using a
field theoretical method. The derivation is performed in
a gauge invariant way. In the one-loop order, the low-
energy physics is described by only the Chern-Simons ac-
tion whose coupling constant is proportional to e2

2π ν. Be-
yond the one-loop order estimate, we have employed the
WT identity whose infrared singular parts are accompa-
nied by the NG mode associated with the spontaneous
U(1) symmetry breaking. Corrections are added to the
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coefficient of the Chern-Simons term according to an in-
frared limit. The mass term of the gauge field is induced.
In a usual experiment observing the quantum Hall effect,
the corresponding low-energy limit leads the correction
term to be zero, which is expected in the Galilean invari-
ant system [7]. The correction term plays important roles
when the gauge field is treated as a dynamical field. Spa-
tially inhomogeneous static solutions of the gauge fields for
vortex states, edge states, etc. lead the correction term to
be non-zero.

The Meissner term and corrections to the Chern-
Simons coupling derived from the effective action in equa-
tion (4.28) could be observed by an experiment in the an-
nular geometry (Corbino disk). By adiabatically inserting
a half-flux quantum π/e into the hole of the annulus, a
supercurrent js caused by the Meissner term circulates
around the inner edge and an electric charge accumulates
at the edge due to the Hall current induced by the elec-
tromagnetic induction [25]. If there is no correction to
the Chern-Simons coupling, then the accumulating charge
is π/e × νe2/2π = eν/2. Since the annulus is a multi-
ply connected domain, the non-trivial winding mode θs

can exist as a classical NG mode solution, which satisfies∮
dθs = nπ/e (n: integer) where the integration path is in

the bulk region. This winding mode saturates the super-
current in the bulk region as js = (csvn)2(a + ∇θs) ≈ 0
by the Meissner effect. The supercurrent flows at the edge
region due to the spatial change of the order parameter.
Since the order parameter fluctuates spatially at the edge
region, the induced electromagnetic field is not uniform
there. Then, the corrections to the Chern-Simons cou-
pling become relevant and the accumulating charge de-
viates from eν/2 at the inner edge. Thus, observations
of these phenomena would indicate the existence of the
Meissner term and corrections to the Chern-Simons cou-
pling obtained in this paper. To obtain a more quantita-
tive prediction for these observations, we need to solve the
dynamics of an electromagnetic field and the order param-
eter near the boundary of the annulus in the Ginzburg-
Landau theory.

Topological structure of the order parameter in vari-
ous physical systems was investigated by Volovik [26]. The
topological quantity of equation (4.34) reflects a global
structure of the order parameter in the U(1) symmetry
breaking quantum Hall system. This topological number
may be observed in some topological objects (ex. vor-
tex). The charge and statistics of the vortex excitation
are interesting future problems [27]. In the present case,
the rotational invariance is broken and the vortex solu-
tion may become anisotropic. Furthermore, the existence
of corrections to the Chern-Simons coupling beyond our
treatments, which comes from interactions between quasi-
particles, impurities, finite thickness, finite size [28], finite
temperature [29], etc. is also still remained as an interest-
ing future subject.
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Appendix A: Notations and useful relations

A.1 Pauli’s matrix

The Pauli’s matrix τi is defined by

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (A.1)

The trace formulae of these matrices are

Trph[τi] = 0, Trph[τiτj ] = 2δij , Trph[τiτjτk] = 2iεijk,

Trph[τiτjτkτl] = 2(δijδkl − δikδjl + δilδjl). (A.2)

A.2 Proof of eik̂·Df(p) = e
i

2π k̂x(k̂y+2py)f(p + k̂)

When [X, Y ] commutes with X and Y , we obtain the
Hausdorff formula

eXeY = e[X,Y ]eY eX , and eXeY = e
1
2 [X,Y ]eX+Y . (A.3)

By using this formulae, we can prove

eik̂·Df(p) = e
i

2π k̂x(k̂y+2py)f(p + k̂) (A.4)

as

eik̂·Df(p) = eik̂·Aeik̂·pe−
1
2 [ik̂·A,ik̂·p]f(p)

= e
i

2π k̂x(k̂y+2py)ek̂·pf(p)

= e
i

2π k̂x(k̂y+2py)f(p + k̂),

where we used [ik̂ · A, ik̂ · p] = −i
kxky

π .

Appendix B: LL matrix elements

B.1 Current vertex

We present useful matrix elements between different LLs.
The basic matrix elements are give by

〈l1|eiq·χ|l2〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
l1!
l2!

(
iqx−qy√

4π

)l2−l1
e−

q2
8π Ll2−l1

l1

(
q2

4π

)

for l2 > l1√
l2!
l1!

(
iqx+qy√

4π

)l1−l2
e−

q2

8π Ll1−l2
l2

(
q2

4π

)

for l1 > l2

e−
q2

8π Ll1

(
q2

4π

)
for l2 = l1.

(B.1)
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Then, f0
l1,l2

(q) = 〈l1|eiq·χ|l2〉 , fx
l1,l2

(q) =
iωc

∂
∂qy

〈l1|eiq·χ|l2〉 and fy
l1,l2

(q) = −iωc
∂

∂qx
〈l1|eiq·χ|l2〉 are

given by

f0
l1,l2(0) =δl1,l2 , (B.2)

fx
l1,l2(0) = iωc

∂f0
l1,l2

(q)
∂qy

∣
∣
∣
∣∣
q=0

=

⎧
⎪⎪⎨

⎪⎪⎩

−iωc

√
l1+1
4π δl2,l1+1 for l2 > l1

iωc

√
l1
4π δl1,l2+1 for l1 > l2

0 for l1 = l2,

(B.3)

fy
l1,l2

(0) = −iωc

∂f0
l1,l2

(q)
∂qx

∣
∣
∣∣
∣
q=0

=

⎧
⎪⎪⎨

⎪⎪⎩

ωc

√
l1+1
4π δl2,l1+1 for l2 > l1

ωc

√
l1
4π δl1,l2+1 for l1 > l2

0 for l1 = l2.

(B.4)

The derivatives of the matrix element ∂νfµ
l1,l2

(q)
∣
∣
∣
q=0

are

obtained as

∂fx
l1,l2

(q)
∂qy

∣
∣∣
∣
q=0

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iωc

√
(l1+1)(l1+2)

4π δl2,l1+2

for l2 > l1

iωc

√
l1(l1−1)

4π δl1,l2+2

for l1 > l2

−i
El1
2π δl1,l2 for l1 = l2,

(B.5)

∂fy
l1,l2

(q)
∂qx

∣
∣
∣
∣
∣
q=0

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iωc

√
(l1+1)(l1+2)

4π δl2,l1+2

for l2 > l1

iωc

√
l1(l1−1)

4π δl1,l2+2

for l1 > l2

i
El1
2π δl1,l2 for l1 = l2.

(B.6)

Immediately, the current vertex parts at the same momen-
tum are given by

Υ 0
l1l2(p, p) = δl1l2τ3, (B.7)

Υ x
l1l2(p, p) =

⎧
⎪⎨

⎪⎩

−iωc

√
l2
4π δl2,l1+1τ0 for l1 < l2

iωc

√
l2+1
4π δl1,l2+1τ0 for l1 > l2,

(B.8)

Υ y
l1l2

(p, p) =

⎧
⎪⎨

⎪⎩

ωc

√
l2
4π δl2,l1+1τ3 for l1 < l2

ωc

√
l2+1
4π δl1,l2+1τ3 for l1 > l2.

(B.9)

The derivatives of the current vertices are also given by

∂ρΥµ
l1l2

(p, p − q̂)|q=0 − ∂ρΥµ
l1l2

(p − q̂, p)|q=0 =

2∂ρΥµ
l1l2

(p, p − q̂)|q=0

=
{
(∂ρfµ

l1,l2
(q)|q=0 − ∂ρfµ

l2,l1
(q)|q=0)

−(fµ
l1,l2

(0) + fµ
l2,l1

(0))
ip̃y

2π
δρx

}
τ0

+
{
(∂ρfµ

l1,l2
(q)|q=0 + ∂ρfµ

l2,l1
(q)|q=0)

−(fµ
l1,l2

(0) − fµ
l2,l1

(0))
ip̃y

2π
δρx

}
τ3. (B.10)

B.2 Unitary matrix U(p)

By using the relation [ξ, η] = 1/2πi, we obtain

U †(p)ξU(p) = ξ − py

2π
, (B.11)

U †(p)ηU(p) = η +
px

2π
, (B.12)

U †(p)∂xU(p) = −iξ + i
py

2π
, (B.13)

U †(p)∂yU(p) = −iη. (B.14)

The unitary matrix in the Nambu representation satisfies

U†(p)∂xU(p) =
(
−iξ 0
0 −i tξ

)
+ i

py

2π τ3, (B.15)

U†(p)∂yU(p) =
(
−iη 0
0 −i tη

)
, (B.16)

[
U†(p)∂xU(p),U†(p)∂yU(p)

]
= i

2π τ3. (B.17)

The unitary matrix and the Green’s function satisfy

[Greg, τ3] = 0, (B.18)
[U , τ3] = 0, (B.19)

U†∂i(UG−1U†)U = ∂iG−1 + [U†∂iU ,G−1]. (B.20)

Appendix C: Examples of the infrared limit

In this appendix, we give two kinds of infrared limit. First
one is spatially homogeneous limit and second one is spa-
tially inhomogeneous limit. Let us introduce a monotoni-
cally increasing function of time f(t) which satisfies

f(∞) = 1, f ′(∞) = f ′′(∞) = · · · = 0,

f ′(−∞) = f ′′(−∞) = · · · = 0. (C.1)

We consider an external electric field Ex = ∂0ax − ∂xa0,
say, in x direction. Let us suppose that the external field is
absent at t = −∞ and the uniform electric field E(∞)

x are
applied at t = ∞. By using equation (4.30), the electric
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current jy is calculated by

ejy = − δSeff

δay

=ν
e2

2π
Ex − c2

s(−εijαki∂k∂j + Cl0∂
2
i )

∂2
0 − c2

s∂
2
i

Ex + (csvn)2ay.

(C.2)

where a gauge fixing ∂0a0 − c2
s∂iai = 0 is used.

C.1 Spatially homogeneous infrared limit

An example of the spatially homogeneous infrared limit is

a0 = 0, ax = E(∞)
x

1
∂0

f(t), ay = 0, (C.3)

where 1
∂0

f(t) =
∫ t

−∞ dt′f(t′). In this case, Ex = E(∞)
x f(t)

and the second term in equation (C.2) vanishes. Then, no
correction appears in the Hall conductance.

C.2 Spatially inhomogeneous infrared limit

An example of the spatially inhomogeneous infrared limit
is

a0 = −E(∞)
x f(t)x, ax = −E(∞)

x

c2
s

f ′(t)
x2

2
, ay = 0. (C.4)

In this case, Ex = −E(∞)
x

c2
s

f ′′(t)x2

2 + E(∞)
x f(t). Using the

relation 1
∂2
0
f ′′(t) = f(t), the second term in equation (C.2)

becomes (αxy + Cl0)E
(∞)
x at t = ∞. Then, the correction

appears in the Hall conductance.

Thus, the space and time dependent electric field like the above
one promises to detect the striking topological properties of gap
functions.
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